Using Speech Data to Recognize Emotion in Human Gait

نویسندگان

  • Angelica Lim
  • Hiroshi G. Okuno
چکیده

Robots that can recognize emotions can improve humans’ mental health by providing empathy and social communication. Emotion recognition by robots is challenging because unlike in human-computer environments, facial information is not always available. Instead, our method proposes using speech and gait analysis to recognize human emotion. Previous research suggests that the dynamics of emotional human speech also underlie emotional gait (walking). We investigate the possibility of combining these two modalities via perceptually common parameters: Speed, Intensity, irRegularity, and Extent (SIRE). We map low-level features to this 4D cross-modal emotion space and train a Gaussian Mixture Model using independent samples from both voice and gait. Our results show that a single, modality-mixed trained model can perform emotion recognition for both modalities. Most interestingly, recognition of emotion in gait using a model trained uniquely on speech data gives comparable results to a model trained on gait data alone, providing evidence for a common underlying model for emotion across modalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Emotion Classification Using Machine Learning and Data Preprocessing Approach on Tulu Speech Data

Abstract— Automatic speech emotion detection is an important concern as computers have become an integral part of our lives. There is an increasing need to develop machines with enhanced natural humanmachine interactions. To achieve this goal, a computer would have to be able to perceive human's present situation and respond differently depending on that perception. The human-computer interacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012